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Abstract: The basic problem oi the theary of primary reguietion was
u

exanined, taking into account both viscous and codlod friction. By

utilizing Lyapunov's secon? method and the theary of point transformation

of a surface, we examined the qualitetive atructure of the "pulme" portions

nf the corresponding paase space ou the trajectoary. We also found some guanti-
tative characteristics of this phase apsce vhich are of intereet to the
profeasion.

Tho results of research were summarized in diegrm; which permit a
solution of prodlems of convergence or noncomvergence in regulation processes.

In the present work on regulation systems dependent on Vyshnegradskiy's
equations (1t shonld be pointed ont that the theory of meny recent regulsting
apparatus oan be roduced with sufficient accurasy to Vyshnegradskiy's problem,
in its complete farm as well as in that particular form corresponding to
the absence or viscous friction -- (see example 14) the nature of motion arising
during varions initldl conditions -- that is, the quelitative structure of “the
pulse™ of the phase space on the trajectory -~ is asocertained and diagrame
are given which emable the rapid determination of convergence or nonoomvergence
of regulation processes or given paramsters and given load variations. As
far as the authars know, the study of Vyshnegradskiy's problems as problems
of analytical dynamics or as problems in the theory of nonlinear vibration is
given hero for the first time. In the past such a study was not satisfactorily
conducted, even far the specisl case of the absence of viscous frictiom.
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~_ Present research in problems connected with clarifying the gqualitative
ampects of the "pulse" of the’ phese space on’ the trajeciory relies, to a
grest degree, «n the theory of ponint traveformations which in the beginning
was connected with the works of Poincare, Brouwer, Birkhoff. These probleme
evidentl; arc destined to play an important role im not snly celeatial and
terrestrial mechanice, particularly in sutcmetic regulation, but also 1o soms
gtudles connected with the case of discontinuity..nder atudy, ths so-called
second method cf Lapynov, which enables meny problems involving stabilitr to
be solved with a2 minipum of cslculations, The diagrams ir this werk are
generalisations of the earlier disgrams of Vyshnegradskiy amd Miges.

Scme of the curves plotted on these diagrams possessed comparatively simple
anaiytical expressions. Other curves are plotted epproximately by a

graphic procedure like thay of Mises.

The Lrief account of results ccaiained in the present work is publlished
in the form of two notes in DAN (Reports of the Academy of Sciences USSR )

/35, 167.
I. THE EQUATIONS OF MOTION: STATEMENT OF THE PROELEM

Tet ve examine an engine (for example, & turbine) equinped with the
ususl centrifugal regulator and lot ue aspume that a rigld comnscticr existe
betwsen the reguletar clutch displacement and the valve opening thav regulates
atesm input, Let us alsn sssume that the shifting of this valve is dome by
the regulstor ltsalf without the application of extermal energy.

The' kinetic equations of such a d”namic system (engine eguipped with a
primary-action regu]ator) subject to ardinary simplirfications (these
simplificseticns, introduced by I. A. Vyshnegradekiy, are: 1) aisregard all
ncnlinearity except that dne to conlomb friction; 23 disregard the engine's
eutomatic regulation; 5) disrege.d tie gyrosuopic Lerm iv the wain suali’s
equation of rotation; 4) assume that the engine load varies arbitrarily and
thet tho equations describe the system's behavior after any unexpected
variation in load, and hence the clutch displacement and also the variation
in the angular velouity ore regarded as lmown in a new steady-state zyetem)
end written in ordinary engineering symbols and with allowance for
viocous and coulomb friotion (the latter iniroduces nonlinearity) can be
written for-!é # 0 1in the form:

m L BRp 2y —eFhF K E

dr?
Jdo e .M (R
vhers dr " X J
T -~ time,

E -- clutch displacement figured from the new position of equillbrium (Gee,
for exarple, refersnces 13, 17, and 18 in the bibliography. After the proper
selection of generalized forcss, the equation (A) can be written in the
form of Lagrangian equations of the secrnd type.)

?) -- daviation of the angular velocity from its new conastant valuo (see mcte
under "E" above)

m ~- mass of regulator reduced to the ccordinate of the clutch,
a -- distance moved by the clutch regulator,

I -- reduced force or so-called "ehergy" of the regulator,

P -- coefficient of viscous friction reduced to clutch movement,
2
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X .- absolute magnitude of coulomb (risid) frictione) farce vemmesr To -
clutch movement,

“5n -~ average angular velocity of engine,

Qe Z2me0,

v the regulator’s so-called cosfficlent of Irregularity, whereiyis
the angular velocity, corresponding to the higlhiest position of the
clutch and w, 16 the angular velocity, corresponding to the lowest
position, .

J -= the engine’s reduced moment of inertie,
M -- average torgue of the engine.

Initial conditlons, me usual, can be given in the form:

- d&
Foee — a5 ) = .
5 Aa, (d'ro 0 Yy = Wy & A,

' (a')
vhers A(during release of the engine load, 0<A<L) represenis the relative
veriation of the engine load; that is, it ie the rstis of sndden variation
in load to full loed.

The soparats terms of the right part of eguation A posssss the following
mechanical significauce: ZS52F is the so-called adjuatadle force due to
the ineorrect (that is, not conforming to the atationary system) position of
the regulator's clutch; +%§;7y ig the so-called adjustadle force due to
thke Innorrect value of the engine’s angular velocity; - s 18 the
viscoue friction force reduced to the clutch moment: + K 1e the ¢ oulomb
frictional force reduced to the clutch movement; ~~Z-& ig the so-called

exgess momernt that scts on the engine's main sheft“with the force of the
clutch displacemsnt.

Now we will introduce dimensionless coordimtes§=—§; and 3, = {—m
and new parameters T, Ty, Ty, having dimensions of time: T, = 1./M

i8 the so-called tims of setting the engine in motion;

- am
Tp= ' 7 ip tho so-called half-time of free fall oy the clutch;

Tk = %_ 18 the go-called half-time characteriging the stroke regulator
(viscons FRiction); and dimensiunleps parvameter € =< callsd coefficient
of regulatcr insensitivity. Then the system (A) takss on the form:

ﬁ“gé’i—f-a%{;-;. 58 =p=n F T )

I

T dy, _
Bz T ) (2)
end the initial conditicns (A') take the formmia:
(d&) _ -
Blo=—1, 47)0—0, Zo=— % X. (8')

From the moint of view of the thoory of vibration we deal here with an unusual
ngcillating syertem, in which the usual harmonic oscillator, posaessing

both viscous and coulomb friction, is connected with the simpiest rotor in
such a vay that tue oscillator displacement influences the input of extermal
energy in & rotery degree of freedom, while the deviation from ceuilibrium
of the rotor's angular velocity produces forces that act upon the oscillator.
(It mst te kept in mind that in setting up the second equatiom in (1) we
disregaried the gyroscopic term (related to tne term & 2B fom »1n the first
agaation) and the term characterizing the =elf-compansation of the engine.
If we had taken these terms into consideration but omitted term -M/af 1n

the second equation, we would have cbtained an elementary Aissipative
gyroscopically connected oscillator-rotor system. The yresence of term

- 2 .
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-M/a & in the sscond equation, we woul? have obtained an elementary digeipative
gyroscopically comnected oscillatar-rotor system. The presence  ~f term -M/ag
in the right-hand part of the second equation in (A) causes our system {fer
sones region of parameter velues) to dsvelor possible inatability.

System (B} contains five parameters T ; T,, Ty, $, £ . Lot us make the
a’ *r k
substitution

g Ay e ——
k3 2 ;
;“_—ev__*"?a X, p/ = EY, Ti?/-7, 7o't

and thsreby the transition to sygtem (C), which 3cmt‘ainuzon two independent
dinensionless parameters A :S]y Ta? and D = Tk/TrV Ta/Zy
[} Tr

dix. ]
472 +Bj{-f'>c_+A7(—‘=y ""__;:) -
dY o= (c)

We will notice that parameters A and B, which are called the main perameters
of the theary of primary regulation, or Vysinegradskiy's parametera, do

not contaln guantities that ckaracterize coulomb frictiom. This mesne that,

in the variables chosen by us, the "pulse" of the phese space on the trajsotory
does not depend upon the magnitude uf the torce of the coulomb friction. By
nc means does this mean that the type of motlon mrising for ‘hese or other
load varieticne does nct dspend upon the coulomb friction, sinece the variation
in engine load iIn our problem is directly characterized by the initial positian
of the ropresentative point in the phese space and oince the initial conditions
for system () are connected with the quantity A, which characterizes load
variation, acoording to the relations,

N

__ AT ) —_— D
%p° i 7.:—;_’ ﬁ"»-—a, Yo s As

(c')

into which the coefficient € of insengitivity onters. If we take into
consideration the force of coulamb friction and we determine the tysten of
squation (C) for the case dx/dt - O and represent 1t in the form of three
simple {irat-degree equations, then wo srrive &t the systen

d = -
JE =% gd;"—=~—°<, -3?- =Fix,v z)

wiars ‘

(D)

—Axf Bzt F2Z >0 orif z= O and—A x + Y D
Floyz)s S—px+ y—Bytt, if 2<9 or if z=0 d=Axty L — L
0

’ /f—'il" <—Ax+y\<+—:’,-_-,2=0

Syatem (D) and the necessary conditions governing continuity of the
functions x(t), 2(t) at the points of discontimuity in F(x, y, 2) determine
the study of the dynamic prodlem in acuestion.

[ TR
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In the case of Lho usual contyifygal .ogalatlor czemined By u:;; thc
initial comdltions in scenrdance with {C') can be oxpressed in the form:
X=Xy, y’——"A'Xo: 22%:;0' ('Dl) -,

(For scme other arrangemenis of sutomatic regulation, particularly
in the cage of go-callsd "imertia" regulators, it is necessary to deal with
more general initial conditions.)

In regerd to the dynamic problem (D) the present wark contains: 1)
qualitstive study of the structure of thé “pulss™ of the phase space on the
trajectary for various values of the persmeters A and B; 2) the quantitative
atudy for various values of the parametsrs A and B in the reglon of stability
in the large interval of rest x = z = 0, -1/2<y €{-1/2 (each point of thie
interval (x = ¢ 5 C, =1/2 <y <~1/2) represents a state of ecuilibrium for
system (D)) appliceble to initial conditions {D').

JI. SUMMARY OF RESULTS RETLATING IO A LINEAR CASE

In order to simplify the following exposition we will give & brief
summary of some results relating to the cese where the goulomb friction
is wbsent. Assuming in syetem {B) € « O and mubatituting

= P,

3 -
S=VE 2 y=y, 7=V T Tet,
wve obtain the liasar aystem:

dx dy d

Ll wmz, 8 =m—x L e — —

ar » i e A X +y BZ /e
with the sams parametera A and B as in the case of system (D). The only
state of agquilibrium In system (E) is a%t the origin of the coordinates.

The cheracteristic equation ¢f' system {(E) has the form:
HF Brig- Ay +1=0 (1)
The root« of equaticn (1) will be negative or will have negative real parte
if ABD>1. If however, AB<1, then among the rcots there will be roota with
positive real parts.

Let ue examine ths space of the parameters of system (E) by laying off
along the rostangular axec the paramsters A 30 and B > 0 (Figure 1) Then
the curve ‘.4'1 with eonation AB - 1 (s0-called Vyshnegredskiy's hyperbols)
will divide the region of those values of (A) and (B) that correspond to
stability (region Us AB 1) from the reginm of those vaiues of (A) and (B)
that correspund to instability (region V: AB<i). Iater we will be interested
in more detaila of the case ABL1. In this case the resl root of esuction (1)
is negative, and the two complex conjugete riocts possess positive reel parts,
that ie

R=-s, ra=piq, e=p—iq(s<0o,p>0,9>0)

If we assume that
q

then we can express, in the region V, the roots of eguation (1) and the
parameters A and B by meens of these new and very convenlent pevsiwters a

S=—a(a>o) -—;-=b(’b>0),

and b:
p= R 7 e R
ey 9 Va(i+59 ' T N<UFL) (3)
A“-’ Ii:ha'—ga..,b s Be a—2b
Vor(i+692 Nl +b*) (%)
- 5 -
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. Conditionz. ASGC, B ».0, 4B becoms respectivelv conditions l;i-_bz— 2 ab>0,

&> 2h, b>0. With this, hyperbola AB = 1 on the A, B -plane transform into
straight 1ine b z O (=-axis) on the a, b- plane. (See figure la.) . .

Let us study, finally, scme properties of the trsjectories of system (z),
whioh we will have to use later. e :

1. The trejectorles of system (E), intersecting plans z = 0, increass
in tios magnituds t from negtive values of z to positive values (upvard)
- LY

tne haif pienc lu surfacs y 2Ax and vice verce (dcwmward) inte half plans y<Aw,

On poimts of the straight line y - Ax the trajectories touch the piane z = 0,
whersupaon near the point of cemtact for x >0 they remein undexr the plane

z s 0, tut “or x < O they are above it. Theae properties of the traj)esctories
are dirsctly deduced from the equations in (E).

5. If the values of the parametera of system (E) lle in the region
vV, then the representstive point, if it does nct move slong one of the two

critical trajectories, certainly Intersects plane z = O.
sotelly tne general sclution of system (E) can be written in the fopmg
= b, CeiT T, Caellees g7+ 1 Cs e#Tsin ‘77;
y = ?542 c, et omy Ca erleos gt Zlfj fgf’ sin g,
z=(, et HCyerTeos g7 1 Ceelisin a7,

\ .
vhere C,, Cp, C», are constants of integration and ki, ky, my, Wy, 1, 1o
are certain conBtants that are indepsndent of 1initial conditions and are
Aeterminabhle from system (E).

1% tue valuss of paramgtersaA and B 1ie In region V, then 8 <0 and
P >0. Therefcre only if C5—+CX ::# 0, then z chengee its sign and
noreover changes an ufinite number of times as time ¢ approacies positive
infinity. If however, Cs = C; = O, then z for all values of time t retains
one and the 3ame &ign as that of Cy. Giving C; various values, we obtain

one and the same trajectory for all C1>>0 and another trajectory for all C
Cl<0. Disregarding these twe emtra-ordinaxy trajectaries, we can ccnaider
frem the analysis of case AB< 1 that the initial point (x5, ¥, z,) for t = O
lies in the plane x, y; that is, that 2o = O. It should be noted that in the
cage ABC1 such an assertion is not always right. If all three roots of
equetion (1) ere real and nezative, them tne trajectories. exce otional only in
the gense Jjust indicated, form a three-dimenasional continuam.

Since aystem (D) contains the same parameters A and B as system (®),
wo'can retain during the analysis of system (L} the same space of coefflicients
A and B. However, ths structure of this spaca of cosfficienta will now be
egsentially different. Region U (AB>1), as we. shall see ir the next
paragravh, will again be the region of stability; wh'ls region V ror
sratem (D) will have to be divided into two parts; reglom V,, the so-callsd
region ‘of conditional stebllity and region Vp, the so-called fieid of absolute

instability (ees parsgraphs 5 end 6).

III. REGION OF ABSOLUTE STABILTTY U (AB>1)

In the case of the linear system (E) for the condition AB>L, all threc
roots of the characterlstic equation (1) pomsess negative real pa—te, and
the region of attraction of the equilibrium state x » ~ = 2 = O embraces
all phess spacs. We vill show that for AB>1, rigid (coulomb) fricticn aoces
not dimwmpt stability and that in this case the region of attraction of the
interval of rest of tke system (D) also embraces all phase space. (It 1s
not difficult to point out problems from the theory of regulation, vhere the

-6 -
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rrogsunce of rigid friciion produces instebiliiy): OF, iR other words we will
prwe the thecrem: if AB>-1, then in syelem (D) the representative point for
any initlal conditions mnconditionally approashes with incremse in +ime t
the interval of rest x = £ » 0, «1/2&y<42/2. The proof of this thecren is
bassd on the study of Laypunov's functions with soms modificaticns of it
applicable to the case of disceoutinuity under discussion.

Let us eyamine firat of all the family of triaxial ellipsoids:

= )7, . fA . D) 3 Aemeos
\./\/?i, b z)=[~14 «(B+A /)Jﬂz-i'my*-}w/f}m——uxz—‘—wlnw RY T

F2AFa)*xz—2yz= C (5)

vwhere & 18 & positive constant greater than A+ B° (for example it 1is rossible
R AB— 1
to Bet Xz 1~ A:bBQQ. During adberence to the indicated conditlon, the
AB—1

surfades of (5) actually reprosent 8llipscids which easily can be checked on
the bazis of usual criteria. :

It 1s easy to sstablish the following properties of “nls family of
surfaces;

1. Rlipses ¥(x, y, ¢) - G have the etraight line y = Ax as their
diameter, Joined by a chord parallsl to axis y.

Hemoo 1t fullows that for eny point (x4, For O) the following

1
inequality holdo:
V(’;(Ol.yoio)> \//(7(0.-’47(9; 0)' (s)
2. Parizg the mrEsnt of s sepivsenistive puint aiong the trajectory u
of the linear systom () the following relation holds:
LY w2 (Ax—y) = [2(AB—))— 3 tAlz<a,,
Froam this it follows that if the representative point ot any moment of
time t » t; wee located on the ellipsoid V : C,, then for the time t o ti>t,
it falls on cllipscid V - Cy, vhere €y <Cqo. In this way, the family of
eliipeoids {5) revesls that fo system (E) under the conditicn AB>1, the
vhole apace im the regiom of ettracticn of +he equilibriuu state (0, C, 0},

Fow wo will pass cn to myetem (D). The trajectories of system (D) can
be obtained from the trajectories of system {E) by the follawing geometris
scmatruction.

1. If for tbs points of the examirsd yart of the trajectory o

oyatsn (D) we have £ >0 or 2z = 0, - Ax-k 3 ~ 1/2>0, or, finally, & - 0, -
Ay -2 20, /0, +ben this sart of ths trajectory of nratem [D) can

be obtained from the correspcnding part of the trajectory of (T) by displacing
the latter by ths emwwnt< 1/2 in the dirsition of the y axis. Thersfors,

far the study of the behavior of such parts of the trajectory of system (D) R C
the uppsr halves of the ellipsolds of (5) can be ueed, by displacing voow
them alsc by<f- 1/ in the directim of the y aris. This family of displaced R
upper halves of the ellipsoids of (5) we will denote in this way:

V+Jz (x;y: 2)= CJ (5')
and ir place of (6) we will now have:
|
V_,_.lz. (%o, Yo, 0)->V+.& (xo; A %t 7 0)' (6")
. 2, If for the polnts of +hs examined part of a trajectory of system ’
(D) wo have £<O or 2 ; 0, = Ax-y - 1/2<0, or, finally, # = O, ~AX Hy+1/2
0, x>0, then ihis part of u tresjectory of system (D) can bs obtained from

tke carresponding part of a' trajectory of (E) by disylacing the latter by
1/2 in the directicn of the y axis, Therefore, for the study of the behavier

-7 -
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of such parte of a trajectory of system (D), the lower hslves of the ellipeoida
of (5) can be used, by dieplacing them by - 1/2 in the direction of “he y axis.
This fomily of displaced lower halves of the ellipsoids of (5) we will denote

. in this way:
Voo (%y,2)=C.

(5')
from which it is obvious that
V..._A (3(-01)'010)'—': )'/4»--‘9.- (xa)}/a"/' ’IJ 0)' (8)
3. Finally, if for theé pointa Of the mxamined part of the tralectory
(D) we have £ - 0, - L/2<-Ax 4y<+1/2 or 2 = O, ~Ax-+y+1/2 = 0, 2<0,
ort =0, -~ Axfy - 1/2 - 0, x>0, then this part of the trajectcry of
systom (D) ia a segmomt of tho straight iine parallel to the y azis. The o
representative point moves along this segment when x>0 on the sice of R
dsoreasing y and when x < 0, cn the side of the incrsesing y until it faile LA
eithér on th> half lins -Ax--y--1/2 = 0, x>0, or on the hslf line -Ax—~
y - 1/2a0, paw(, x<0., Further motion is exscuted in corfarmity with case
1 when x<0 and cess 2 vhen x >0. EFllipses Vy3(x, y, 0) = C, ellipses V.
(X, v, O) = ¢ and the motion on the megments, sarallsl to the y axis, aro
shosm in Figure 2.

We will not go on to prove the thecrem. First of all we nots that
equations (D) do not changs with the substitution of x, y, % by -x, -y, =g,
respectively.

let the inltisl position of the representative point (for the tims tam= tg)
be X5, oy .. By virtue of what has just been stated wa can vonsider
vithout. 1imiting the generality that z, > 0. If 2 =?& 0 for time t5<t <o,
we wili have with an ascuracy up to & displacement of 1/2 along the y-axis,

4he mawma mawamand am Pav +ha Vineaaw sana T wiwina P (7Y 4= +thia nama.

the representative point approaches in the limit (0, 4 1/2, 0) (the sign
is plus if 2,>0) and it 1s mirue if 2,<0).

In order to prove cur theorem, we only nave to prove that if the
representative point is incident twice upon the plane z - O, then it
ztarts 1ts movement ir epace ocn en ellipae of lower numbsr, after the
sesond arrival cn this plane, rather than after the first arzivel on the
Dlane.

Tet first the reprosentative point fall on the plane z«= O (on the point
Xos Yo 0). Without imiting the generality it can be considered that it wili
ptart further tc meve in the apper half space and conseasuently, from
s111vack Vb . (z, ¥y C) = Cp. During this movement, it will tremefer,
by victue. 07 (7) om to ellipeoid V. (x, y, z) = C, vhere C<Cp and C
decreasss with inoreasing time t. ThLo.efore, i1f the representetive
Point for time ¢ - t; falls on the plane z'z 0 (on point x5, y1, O), then:

€=Vl (%,,y,,0)< C,-
By virtue of system (D) for Xy, y1, e have the ineguslity (as@f) £0):
’ =t!

\
—Ax,+y, ~4 < 0.
Furthermors, 4 cases are possible:

(1) z, =0, - 1/2€y1<1/2. Then movement will cease and the represerta-
tive point }n a finite interval of time will reasch the segment of rest.

(2) x>0, ¥ &+ Axy - 1/2 or x,<0, yl<Atl - 1/2.
Then by virtue of system (D) the representative point must continue its

mo-ement under the plaxe z - O and, corsequentiv. instead of the family
Va4 z C ve mist nov take the family Vui a C.

-8-
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LBY virtua of 18) and (£').ye havl -

Oy mbey (X, ¥;,0), = V*i("b Y1 +2.0)< Vik (%,42,0)= < C,
(3) x> 0y Axy - 1/2<y1- Ax 4 1/2. Then the representative point
88 was noted eariier, muot move along the straight line x I3, until 1t

falls on peint x,, ¥z Azl - 1/2, and continmues its movement in the space
under the x, y plane. .

- —

—

But once again by virtue of (8) and (6') e have:

C_f:“v"f: (xl»y_u 0)=V“'1 3(,‘/47(,‘“'—2'/9< V""f (7(',,/?7,'—}-—'5;0)4
4< V;.é (X,;)/,-. 0)= C{I<C"'

(4) x,<o0, Ax, — l/2,<y<1!a:1—f— 1/2. Then the representative poini
mst move aiong the"siraight line x = X3, uwntll 1t falls on point )
J - Axl+ 1/2, end continues its movewsat under the x, y plane.

By virtue of (6') .
Z,-‘l/"l'i (x;:,)?,a )= V+‘%, (X,,AX, _}')E' 0)< V-l-lz-_ (xll)’f’ 0):' CI"

In this way cur assertions are proved in rll cases.

Speaking of system (D), we will call the region U(AB>1) the region of
absolute stability in the space of parameters A, B. The rogion of
oonditional stability in the Parameter space will be called the region of
such values of parameters A, B

for which parameters in the phese space of
system {D) the rogion of erfamaiom AP b e

_____ &uSal Of ieBl Guws not embrace the
entire phase epace.

IV. THS WEGICN V (AB<1); REDUCTION OF THE DYRAMIG
PROELEM TO FOINT TRANSFORMATION; UNDERREGULATION
AND OVERREGULATION

By virtue of the observation made in Section I, in the cese of AB<L1

the representative an any (except the two extracrdinery trajectorios, the

exiatence of vhich can be disregarded, kaeping in mind the wnavoildmble

r'luctuations} trajectory of system (D} reaches the plane === O in a finite

intezval of time, Therefore, during an exeminmtion of the movement ¢f the

representative point in the phase space we can accept that t= O when the time

tw= 0, It iz ob¥ious thet, in the examinad vasce, the studying of the behavior

cf each wuparate trajeciary ir the bhase space !s equivalent to studying

the succession of points of :ntersection with the plane 2 - 0, and the

etudying of the structure of the "rulge” of the Phase space on the trajectory

13 equivaisat it atudying thne structurs of the tranefarmation of the plane

2 = O into itseif, which (transformation) 1y eff

the representative point on the trajectory.
For convenience of furt

her culculations we will make one mors subatitition
of variable in gystem (D), by

] by setting (do pot confuse with those &, » ,Tvhick
figures Sectiona I and II): T=g7 £=$” 7=y 529725. . (9)
Then (D) transfarm into (D'')
d& dy 4 _ 1 ,
T bF e g =n (Gl (>1)

-0 .
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"/475"}"9-3‘716—";__' with g}ﬂ and with ;-—:0 and _Aq§+9—£>o’

Fl&pg)=1{ 0 withd=0,—2 <—Aql+y< +4»
\—Aq’é-'* b—‘qug—/--JL_ wiﬁpg K& and with ;"_—_0 ar)d—-.Aq g'f‘)-f-—'i'(:o,

whereupon, In sccordance with (3), we will have:

A o [téz-—Zdb_. B 2 .. 26
== "aCI6%) aEvEY) (10)
Let ua divide the planeF P (¢ - 0) inte thres mentors (see Pigure 3):
G, whﬂre-‘ch‘;-f'y—— POor—AgE+y9~Lt =0 <0
G whae——-:’;_ L—Ag&+yp< +. or ——Aaé—/—p—.-——~0,é-‘>0)
r—Aqlty+L=0p <0, (11)

G(J‘)w.‘,ere, 44£+),7+—I“’2_<0°'""A45+p+%1— ‘-01 €>‘9'

Let the initial point ( o cerresponding to = 0, belong G(e).
Then the soluticn of (D'') will he ve)tu Form:
¢'=5o) p=—fv, G==d. (12)

’l‘?g represontetive point moves according 4o rule {12) until it leave. sector
), t rerring whenZ, >0 into sector al*), and when & < G into
sector G At this moment its cocrdinates, acm'rc'ing to {11) and {12},
will be
—_ 4 — L s =

é:l_é-cr 37/;'”‘/50 2. sign é_a’ Cl (13)
Let us agreo to call the above-described transfer of point (£,,».» 0) into
potnt (£,,y, 0) the tramsformation E. Trensfarmation E, in this way, 18
eingle-valued (unique) and continuous, but rot reciprocally unigue.

i’t the initial point (£,,%,,0), carresormiing tor= O, tolong o
rector G( By virtue of (D'') the representative polint starts its novement
in the upper half space (£ >0) and again retwrns te tne plone g = 0 to point
(£,7,, 0) at the momsct of time T: t.

By virius of (D'') 1t 13 emsy to write in parametric form the formula
giving the transition from £,,», t0£,5by introducing the parameters t, the
time of transition, and v, a certain auxiliary parameter: the movement of
the representative point in the exaninad case, by virtue of the equations
in (D'') 16 expressed thus:

E=C,ae %t _(,e%[bcos 7~ sint]-C, bt leosa+ bsimz], \

he—l = —eT
rmg=2Cc + CiebTeos T4 CyebTsin ()

S P
Crate T C e P T (b* ) tus 7 —2 b s5in 1] —(,ebT
L2bcosv 4 (b2 )) sin 7],

- T L

FYOTI LR
COI LETt
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whereupon, &ince /.= 0. we have:
Ly S

Crat+Ca (h*= 1)+ Cy2b=2. (v)

The value of t 18 determined es the least rusitive root of the equation:
-C ate =L CoebTIb*=1)eost =26 sint]~C,e®® [2bcost+ (b*~)singd= 0.
(c

According to (a) and (b), C,, G,; Cx can be determined through ¢

and then egustion {2) will Five +the transity

the transition time V. However, it 14 much
more convemlent to do it im another wey: express Cl, Cg, C: with time as a
parameter and in the same way aleo express é‘o,%‘ a8 functions of + and of a
Becond euxillary paramster v, by setting:
tx)a
C= [ Q2 o ],
.. 6‘1
=

S0 12

b ST

Clxvflbe"("-*b)f—lb cos t—(}_;z_[)_gj,v_tj, (d)
Cy=v E"‘(A’z—-/)&'—(“““b)t-f-(/a"_,):ps t —2bsintl

)

ir in (&), we get 7= 0, and ewbstitute in ¢ » Upy G5 thelr expressions from
(8), then we will obtain/, ,,es functions of v und i I in {a}, setting
7z t, wo agmin substitute in €y, C,, C, thelr expresslons from {d), then
we will o'btain{,,pl as functions of v end t. This will give formmlas

(14} and (25) predented in the text.

N T
& mm e —e - .
el ve==Tf(-z), y—t=—ve %t g(-2), (1)

where:

FD=C14+b*)[cos t F E’—“L(a‘:"é” Simt—e=(atb)t], ]

(15) .
g(= =24 05 r+ [(/+b’)1——a-’~(!o1--lz)_j Sint4+2be—(a+bil, f -

G %

In this way (1) and (15) give through parameters v and t the rule for trans-
farming the point,,»,of plane £ = 0 to the point &, m; of the same plane, It
remains only to determine the interval of variation of the varsmsters v and t.
We will otart with finding the interval of variation of piremeter t. We

¥ill notice that, acccrding to (1L), all points with the mame “transition
time™ t lie on the ray which passes through the extremity of the segment

of rest (G, 1/2) and has an enzular coefficient

t)=9(t
2() =98 . )
Fn
The transformed points. (£, 5, ) 1@ n the rey which passes tbrough the same
1(aoint (o, 1/2; and have an ang.iar coefficient
sae Figure 3
sor b1 j=140=2)
(—tj=3=2t
#=e)
(17)
It i8 easy to show that
; (= tim h(~t)=H4.
. fim RO i b0 =Ag ()

In this VH the poi?g with a zero "transition time" 1lie on the boundary of
sectars G(1) and G (<), that is, on the ray ~hg & 4%- 1/2 z 0, & > 0.
This follows directly from the note made in Section II that along this ray the
trajectories of the¢ linear system {talking into consideration obviously the

1/2 dieplacement in the direction of the » -axis) touch the plane, remaining
under this plane neer the point of contact.

~11 -
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2. )b P e e

When t > O in our cage, 3ince a >0 and b >0, we will bhave: k' (i) > 0.

> The function of k /5) 1s a monotonically ilncressing function of t. In thie
way ‘the ray, carrying poinie with "transition time™ t, turns with
increasing time £ to a posltive directiom (counternlockwise).

We will “sweeyp," during variation in time t, the entire G{1)
sector by thia ray (all the while passing through each of its pointe only omce),
1 w . 111 ke?g)varying t all the while until we come to the other boundary
of G{2) and Gl¢); that 1s, 10 the ray -Agd+ ,— 1/2 - 0;5<0. 1In thls way the
uvpper boumdury of the varilsticm in time t wiil bs ovieimed as the least positive
root of the squation

k (t) = Ag,

cr, in & develaped form after a sluple transformation, of the equevtcu:

e-fatsb)l —cost—+Catb)sint=0.

(20) ‘
Dencting the smallest poaitive root of this esuation by 4z 4 (a-+d), we \\
. thms obtain t's interval of varlation .
OL bt L8 (21)

The values of the fnnoti(m0(a+'b) are given in the following tsble:

&+b e a+b o a.+h 4 |

0 2w 0.601 4,239 1,312 3,79k
0.023 5758  0.660 4.182 1.378 3773
0.0%0 5.685 0.720 k.,130 1.439 3.752
0.060C 5.456 0.7hk 4,111 1.500 2,752 )
0.120 5.157 n.750 1,106 1.559 3.714
0.180 L.,950 0.780 4.083 1.621 3.696
0.240 790 0.840 4,040 1.680 3.680
0.27h5 .g_ T 0.900 5,000 1.733 3,656
0.300 4.660 0.960 3.56k 2.673 3.500
¢.330 4.603 1.020 3.930 3.790 3.400
0.360 4.851 1.080 3.899 6_.?78 3.;50
0.420 b.A57 1.140 3.870 j
0.180 4.376 1.200 3.843
0.561 k.303 1.260 5.818 oo T

A l2 -
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1t 18 not difTicult to @ee that as (a-¢ b) >+ oo, 6= ,

Fram the ebove table it is seen that & im & decremsing function of (a—-1b).
Iis graph 18 given in Figure 4

We will notice that from the expression for k' (t) derived above; it
follows that when 0 < + <4 we will have:

d /-
F A} <o0
Conseouently, the function ki-t) monotonically decremses, and the ray
é-’:—-ye—a-.rf(—t,), 2_3/:=___,/e~—a,ty[__z-j

turne clockwise, with incremse In t, from the initital position carresponding
tot = O to acme fini?e value igﬁ‘responding tot =4 . Thua the ray "aweeps®
part of tho sectors G(2) and G{2)

Tet us now exemine v's Interval of variation. It ia determined by the
fact thahshe vointa of the rayk, - v* (t).5, ~ 1/2 - vg(t) meat belong to

anrton G ,Binoe for v = 0 we chiaje the iwitial polnt of ray (0 41/2),
then the whole problem 18 reduced to determing the ¢ign of +.

For small t's, it is guite emay to @ee that
” P -
PO~ ¢ LHEHRT 4 ),

since for amell t's we bave £ 50, then v>> 0; thererore,
0€v<L+ @ {An)

In this way eaoh point (£,, », } of sector 6(1) plane & - o, moving in T
socardance with (D'') in the hslf space £ >0 ?using the,time t, falls an
polnt&,; , », Oof the same plane belonging to G 2) or gt2) : whereupon tlie points

with ome and the same transition time ¢ 1lie on one and the same ray:
I .
£, = VA, nx=vg (t), v>0

and a1l on one and the aame ray
glz-. _Vg_-“’tf (_ 7")) -,7,_..)2 =__vs—n_f'9 (_r)lv>0-

Paramstar i determines the angular coefficient -f the ray and veries from
0 to 4 ; yarameter v determines the position of the point on the ray and
varies fram O to4 o . .

Let us call the gsovioully describewd transformation of pointa G(l)into
points ?( o(2) ana (}( transformation 8+ . Thig trareformation ie reciprcoally
unigue (single-valued), by virtue of the fuct that the trajectories of the
linear system (E) in space do not interssct, and is continuous.

Completcly anelogous roaaoni?g’ calculations, end fo es de es'mine
the transition of the points of G into the points of G(1) ana ¢{2),

8ince system (D'') does not change with g substitution of &,7,&
by -é‘, -9, -{, whereupon the sector G 2 pesses into itself. Instead
of (14) we will now havs :

L= vF, 9+ L=vqr), |
Eym—ve ™ F(=t), g+ L=—ve g1 [ (1)
A
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vhere the velue of v now muef _S;e takon ?ecative: ~m <y 70,  The trana-
formation of the points of G\-/ and G2 , described in formula (1b4'), we
will cell transformation 5- It goss without saying that the trans- -
formation also 18 reciprocally unioue (single-valued) and continuous.

To shorten further expoaition let us introduce aymbolic designations
for the originsl reys and the rays transformed by transformations S+
and 87. Ray {r- vF(t), e /24 vel(t), v > 0f we w11l denote by symbol A
(4); and the ¥ay outained from ) (t} by tramaf%rmtion 5+, that is, the

ragfl o wela)em8t o o 1/2 vl 4)o-mt ) v3> 0] w111 Yo oxpresscd by the

&7 p < - ]

syml":%l A (t}. Ray §/= v (t), y = ~1/2+ vg(t){ v < 0} we will denote by
the symbol N (t); and the ray obtained from A’ (5) by t{amsf tion
S7s that 1s, the ray{g :—vf(-tze"“; Yz = 4/t - vg(-t)e~ats y 21?)3 will
be expressed by the symbol )\’ (t) (sse Figurs 3).

We will agree for the future +o distinguish the so-called case of
underregulaticn froa the ceae of overregulation.

Let the initlel values &,ybe such that -Ag &, + n— //2 2 O and §,< 0;
that is, points f,nlle on ray A(4). ’

We will say thai underregulatiom takes place if for the transformed
polnte 5,7 ve haveZ {0, and we will may that overiegulation takes place 1if
for the treneformed polnts we havef >0. The limit or boundary betweon casee
nf underreguletion and overregulailon 1s determined by the discontinmity in

-4). The expreasicn for k(-4 ' - g((«ﬂfLeaai]y can be changed to the
£{- &)
following form by using (20):

Al-8)=__| o Labtbd—ab*~(I-2abtb?eate] ,
clil+b/ (‘)—cat(;) T b cot g

From thies it ie seen that far the limiting case
= ot 9.
Equations (23) mad (20) enable cne to find a and b corresponding o this
1imit and, through them, A and B. The correapondirg values of A and B
are giver in ths following table:

]

A 2.623 2.Lk76 2,260 2.161 2.210 2.467 2.68. 2747  3.000
B 0 0.225 0.689 1.185 1.718 2.213 2.647 £.7°%  3.00C

Curves corresponding to this limit are chartsd ip Figures 1 and la as the line
R. The region of underregulation lies to tae right of this curve. From the
expression for k(- ) it is seon that in the case of underrogulation b > cot #
and in the case of overregulation b <cot 4.

Lat us return to the transformation of the plane S - C. Every point
ot the plane [- O depending upon its location is either nut displaced (points
of the segment of rest £ -0, - 1/2 < 3¢ + 1/2) or undergoer one of three
transfamations: ST, 8~ or E.

Performing the corresponding transformation S+, S~ ar E for every point
of the plane, ve obtein the transformation of the entire plane &« 0
within 1teelf, which we denote by T and which is unigue CEiHG]-? xalued)
but not reciprocally unique {bscause of the pointe of sector G 2) which
are subject to tranaformetior E).

In this way, in the examined case (AB<1) our dynamic protlem (D*)
is reduced to point trensformation 7 of the plane 4‘. 0 to itself,.

.
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7. REGION V (AB<1); STUDY OF THE STABILITY
OF THE REST SEGMENT FOR SMALL DISPLACEMENTS

Let ue examine the behsvior (during a repetition of transformation T)
of points Lying sufficiently cldss to the fixed polnts of_tra.nafomtio? s.hat
form the segment of rest (£ = 0, - 1/2&y4-1/2). Since i))m poixé? of Gl2
according to transformation E pass into the points of G( or G\/4; ‘then by
virtwe of symwetry it is sufficient to examine the ?ﬂnts of G(12 cloale‘
to the point (0, 1/2). Insorar as, far points of G‘\*/ sciooe to 10, 1/2i,
the parameter v has small values, the transformed points after transfarmaticn
¥ will fall on ray A ( #) or X ('§). Since transformation E does not change
the abecizsms of the transformed points, then upon the repstiticn of trans. -
fcrmation T the points will approach in the limit the segment of rest if for

sufficiently small §, ve have / Eo/ >/£1/ ‘ (24)

With dhe opposite tmequality they will, at least with the first repeti-
tiom ‘of T, withdrev from the segment of rest; not cune point of plans [,
will then approsch ths ssgment of rest, as to its own limit, during repetitiom
of trensformution . Conditicon (24 18 reduced to

1F(8)] > e~=21f(=6)" (2b7)

It 18 mot Aifficult to verify that for the case of underregulatiom this
condition is reduced to the inequality e~?8%b gin 4 cosf and, es it 18 .
euey to soe, by wirtus of (20) it is always fulfilled. In the case of over- sy
regulation the sendition (24!) is reduced to the Inveuality e C

e~ >4 sind—cos & ("5{) Ll
and fulfrilled for only some region of the values a, b and, consequently, also
A B, The maramairis renregantation of tha 1imit of that reglon of the A. B
plane whsre the ~egment of rest is stable (curve W, Flgure 5), caz be

fTa—26b

wvritten in the form A____J_j__bf_—_____h»b ;. Bl
- Va3 (l+eJ* -\/a.(/+b>i) (26)
- vheres & and b are functions of the &uxiliary parameter # in agreement with

the implicit equatioms:
6"645;—&0: 0+ bsind, G_(“’";'b)o-——-cw 19—(5*+b)-”"7 9.

' Tae values of A, B for this curve We are qiven in the followlng table:

(26')

A 1.261 1,250 1.227 1.1h41 1.096 ¢.y50 0.892 0.847
B 0 0.004 0.037 0.157 0.338 0.473 0.582 0.675
A G.609 0.776 C.749 0.725 0.702 0.583 0.664 0.648

0.755 0.826 0.893 0.955 1.01k 1.064 1.115 1.165
0.633 0.619 0.605 0.515 0.464 0.378 G.279

-

1.211 1.257  1.299 1.336 1.885 2348 3.333

In Figure 5 1s shown curve Wo and also tiose rsgione of the A, B piane
where the segment of rest ls stable for small dieplacements {zegion of
conditional stability V,) and where it is unatable for small dioplacements
(region of absolute ina%a'bility \ N

The following paragraphs will reveal the meaning of theso names (absolute
and comditiomal) for the regioms V) and Vo.

- 15 -
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VI,  FIELD OF ARSOLUTE TNSTABILITY (RFGION V,)

In thie case the gualitative picture of the transformation of the £, »
plane intoc itasif is sstablished very eimply.

Let us study the auxiliary functlon

()= 85" f(—t 0Lt B
7 Z ' ’ (27)
vhich gives st least the sign of the ratio of the abscissme of the initial

_Function tp(t) suffers an infinite discontinuity faor that velue of
+t = % far which £{t) - 0; whereupon the function changes its sign upon t's
passing through the polnt of discontimuity. We have

Ade__a . ez='r _ Yt froeT t)+
=T L'f(t)]l{e (w+b,1'/)’c, +(ec4h)sint)

+elarblt[eos t—(e+b)sint]-2+ [+ (a+h)F]sin®y L 0.

Actuelly, dencting for sske of brevity the expressicn in irregulsr persnthesis
by @ (t), we gst . ;
B'(t)=—TL)+(atb)?]2sintlcos hyp(a+b)t—cost].

It means thet O’ (£)< 0 when 0 < t <yand &’(t) > 0 vhenw Lt 4 (< 2r).
Consequently, @ (+) becomes a maximum at the ends of the intervel. But, ae
1 eusily found: ® (0) =D (4) - 0. Conseguentiy, P (t) <0 and therefore
a/at ¢ (t) <0 (R. =. D.).

If we realize that lim @ (t) =—1 and ¢(8) - b {b stnf- cos Oin |
(by virtue of the sasumption of instability of the segment of rest), than 2
1t 18 oclear thet the graph of @ (t) has the form schematically shown
in Figure 6. From this it follows that in.ihe case of instability of the
aegment of rest the following inequality holds | &,/ >| &,[. However, this
51111 doems not Jolve the rroblex concerning the behavior of the points
during repetitim of transformation T, since for small. * ths retiom
c¢an approach as close to 1 as desiraple. To do this le: us examine {68 result
of repetiticon of tranafcrmstion: the point* with abscissal, is transformed
by transformatioa st toa point with abscissaZ, and then by s transformation
5" (and, vex’aps, aftor intwrmediate transformation tbat does not change
the abscissa). into a point with abscisea &,

u

S .

We will shov that }E;} 2> a > 1, where q ie a gertain constant relative
to&, . To do this we notice that the pointe of ray ~{7~) traneform into
pointe of contimation of this ray; that is k(77) = k(-1) (conpare the finding
of a fixed point of an infinitely removed straight line in Sestion IX, Part
II). Consequently, if for a transfarmetion S+ the transition time ie t <,
$hen for ¢ transfarmed point the transition time by a transformation S~ will
be t1 3> {it san be shown that both transition times will > ar ). But
by the nature of the function ¢ (t) 1t is clear that when t>sws have:

|9t | >min (@ (m)], |9(8)]).
Denoting min (| ()] |9(8){) = u, we obtain: o F
s th
ER S
£, |7

lo]-

But from this it follows that after 2k applications of the transformations
St end S- (and, perhaps, a certain number of the iransformaticm E), we wild
have for the abscissa of the transformed point £ 2k:

vhich was to be pruven.

|| >a%]E]-
- 16 -

CONFIDENTTAT,

CONF iy TiAL




pproved for Release 2011/09/13 : CIA-RDP80-00809A000600260531-3

- gl Sanitiz

o | CONFGENTIAL | -
CONFIDINTIAL 50X1-HUM

From tRia 1t rolicws that no matter what tho initiml point (as Long a8 Eo=f=0),
the tromsformed point woves off Leward 1ntind L' lw Tepeste.d transfarmaticna. .

In that case, vhené, = 0, we will have 5% 0. Actually, as was already
} pointed out, anly when t - v the transformed point lies on the continuation

of the ray upon which the 1nitial point liss. Ths ray that corresponds ’50

t = 7 does not coincide with 37 ~axis, because f(W)_—_ __(~H_bg)[,_’_ e~-(¢m+b '_7#‘0.

From chis it follows tnat the points or the y -axis aleo fall away toward infinity.

Yhus the problem of “he gualitative picture of the tronsformation of the &,
plant into iteelf is completsly solved in the given case and it 18 estamblished
thet for'all values of A and B in the regicn V., for any initial conditions,
the regulator produces sver-incroasing amnplitudes of oacillation. (A
continvation of this work will be placed in one of the future lgsuse of the
Journsl.)
ﬁig"*aa fﬁll(ﬁ.7 ) . .

a ] |w
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